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Multifractal Percolation and Growth in
Intermittent Media

A. Bershadskii'

Received October 21, 1996

The Havlin—-Bunde multifractal hypothesis for the probability density of a
random walker is used to obtain the scaling law of the pth-order correlation
function of the concentration (for percolation) and of the height (for growing
surfaces) differences: ¢,(r) = {|@(x +r)—O(x)|"} ~r% in intermittent media.
It is shown that near the transition to homogeneity {,, = Ap In(p/p,) (where 4 and
Py are some constants). Good agreement with recent experiments and computer
simulations of different authors is established.
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1. In ref 1 the multifractal hypothesis
(P~ (P (1)

was formulated, where P(x, t) is the probability to find a random walker
at time ¢ at distance |x| from its starting point, y < 1. This statement was
rigorously proved in ref. 1 for linear fractals and it is strongly supported for
percolation systems by numerical simulations.

On the other hand, it is shown in ref. 2 that the percolation process
can be realized in such strong intermittent media as turbulence. In such
media the Havlin—-Bunde hypothesis can be extended (for large ¢g) on the
space differences

A4P(r)=|P(x +r)— P(x)| (2)
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Indeed, if we consider a sphere of radius r (with center at point x) and take
a set with finite number N of points on the sphere, then (under some
general conditions)

Xl (4P)”

(4P(r))") ~ N

(3)

[here AP, is value of AP(r) in the ith point of the set]. In the case of
large p the main contribution to the sum (3) is given by extremely large
(on the sphere) values of 4P;. In strong intermittent media one can expect
4P; > P(x) (with probability close to 1). Then, in strong intermittent
media

(4P(r)”) = {(P(x+1))")

for the large p. One can see, however that the dependence on x appears on
the right-hand side of this estimate. As shown in ref. 3, fully developed tur-
bulence can be considered as quasihomogeneous. In terms of the Havlin—
Bunde hypothesis this means that we should consider y — 1.") In this case
we are dealing with a quasihomogeneous medium and consequently

lim <(4P(r))") ~ )111n| (P> (4)

y—1

2. For our purposes it is suitable rewrite (1) in the dimensionless
form

F,p~ Fim (5)

where

<P,,> i — (p/n) nt
an=<P,,>,,/”~<P>p trim (6)
and
p’—(p/n)n’

= PIT 7
Prupg q,. — (q/n) PE ( )

Let us introduce an analogous dimensionless form for the differences

e _ (AP

= 8
ORI ®
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Then from (4)

lim F*

~ lim(F3,) (9)
yp—1

p—1
If there is scaling
C(4P(r))?> ~r (10)
Then from (9) and (7) we obtain

Cp_(P/n) Cll_l‘ p)’_(p/n) n’

lim = lim 11
P = L g —(gm o
Since
. _pIn(p/n)
}l—inl pnpq_qln(q/n) (12)
we obtain for {, the functional equation
C,;_(P/")CH_P ln(p/n) (13)

{,— (g, qln(g/n)

3. It is easy to show that general solution of the functional equation
(13) is

{,=ApIn(p/p,) (14)

where A4 and p, are some constants. To compare this result with the
experimental data it is suitable rewrite (14) in the form

Q=a-¥-blnp (15)
p

If we choose the axes or coordinates (y, x) so that, y={,/p and x=In p,
then Eq. (15) [and (14)] is represented by a straight line.

Since P(r, t) can be considered as the concentration of a passive scalar,
we can use recent experimental data on the multifractality of passive scalar
differences in turbulent media. Figure 1 shows the experimental data
obtained in the atmosphere (25 m above the ground).'*’ The passive scalar
in this experiment was temperature.' The straight line is drawn in the
Fig. 1 for comparison with Eq. (15). The same values of {, were also
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Fig. 1. The scaling exponent of the concentration diflerence moments obtained in the atmo-
sphere.*’ The straight line corresponds to Eq. (15). The same data (for integer values of p)
were also obtained in the experiment of ref. 5.

obtained in another recent experiment,'> which can be an indication that
the Havlin-Bunde hypothesis is valid for turbulent percolation.

4. It seems natural to apply analogous considerations to kinetic sur-
face roughening with power-law-distributed amplitudes of uncorrelated
noise.'® 7’ The appropriately normalized gth-order correlation function of
the height differences

epr) = (X +r) = h(x)|7) ~rtr (16)

should be used in this case instead of (10).'“” Figure 2 (adapted from
ref. 6) shows the results of a recent large-scale simulations of kinetic surface
roughening with power-law-distributed amplitudes of uncorrelated noise.
Already the authors of ref. 6 pointed out that the sharp change at p~3
(In p~1) can be an indication of a phase transition (in our terms this is
the phase transition form random fractality to homogeneity: y — 1). The
straight line in Fig. 2 is drawn for comparison with (15) (cf. Fig. 1).
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Fig. 2. The scaling exponent of the pth order correlation function of the height differences
obtained in large-scale computer simulations of kinetic surface roughening with power-law-
distributed amplitudes of uncorrelated noise (adapted from ref. 6). The straight lines corre-
sponds to Eq. (15).
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