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Multifractal Percolation and Growth in 
Intermittent Media 

A .  B e r s h a d s k i i  ~ 
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The Havlin-Bunde multifractal hypothesis for the probability density of a 
random walker is used to obtain the scaling law of the pth-order correlation 
function of the concentration (for percolation) and of the height (for growing 
surfaces) differences: cp(r)= <lO(x+r)-O(x)lP)~rr  in intermittent media. 
It is shown that near the transition to homogeneity (r = Ap ln(p/po) (where A and 
Po are some constants). Good agreement with recent experiments and computer 
simulations of different authors is established. 
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1. In  ref. 1 the mul t i f rac ta l  hypothes is  

( Pq)  ,., ( P )  q~ (1) 

was formula ted ,  where  P(x ,  t) is the p robab i l i t y  to find a r a n d o m  walker  
at  t ime t at d is tance  Ixl from its s tar t ing point ,  ), < 1. This  s ta tement  was 
r igorous ly  p roved  in ref. 1 for l inear  fractals  and  it is s t rongly  suppo r t ed  for 
pe rco la t ion  systems by  numer ica l  s imulat ions .  

O n  the o the r  hand ,  it is shown in ref. 2 tha t  the pe rco la t ion  process  
can be real ized in such s t rong  in te rmi t ten t  med ia  as turbulence.  In  such 
med ia  the H a v l i n - B u n d e  hypothes i s  can be ex tended  (for large q) on the 
space differences 

AP(r) = IP(x + r) - P ( x ) l  (2) 
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Indeed, if we consider a sphere of radius r (with center at point x) and take 
a set with finite number N of points on the sphere, then (under some 
general conditions) 

Z,U=l (AP,.)p 
( ( A P ( r ) )  p )  "~ (3) 

N 

[here A P  i is value of A P ( r )  in the ith point of the set]. In the case of 
large p the main contribution to the sum (3) is given by ex t reme ly  large 
(on the sphere) values of A P  t . In strong intermittent media one can expect 
ziP; ,>P(x) (with probability close to 1). Then, in strong intermittent 
media 

( ( A P ( r ) ) p )  ,,. ( ( p ( x  + r))V) 

for the large p. One can see, however that the dependence on x appears on 
the right-hand side of this estimate. As shown in ref. 3, fully developed tur- 
bulence can be considered as quasihomogeneous. In terms of the Havlin-  
Bunde hypothesis this means that we should consider y ~ 1. (t~ In this case 
we are dealing with a quasihomogeneous medium and consequently 

lim ( ( A P ( r ) )  p )  ~- lim ( (P ( r ) )  p )  (4) 

2 .  For our purposes it is suitable rewrite (I)  in the dimensionless 
form 

F ~ F / ' . .  ,, ( 5 )  np nq 

where 

F,,p ( P P )  ~ (P ) / -~P /" ' "~"  (6) (p , , )p / , ,  

and 

pY - (p /n )  n ~' 
P,,+,,+ - qr (q/n)  n ~' (7) 

Let us introduce an analogous dimensionless form for the differences 

( (AP, . )")  
* - ( 8 )  F , , p -  ( (ap,.) , ,)p/, ,  
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Then ~ o m ( 4 )  

If there is scaling 

lim * lim(F*q)/'.,,. F np 
) , ~  I ) , ~  1 

( (AP(r ) )  p) ~ r~,, 

Then from (9) and (7) we obtain 

lim (p - (p/n) ( ,  
"~ '  (,i  - (q /n)  (,, 

Since 

- l i m  P ~ ' -  ( p / n )  n ~' 
y~ i q Y -  (q/n) n y 

p In(p/n) 
lim P,,p,/- 
r - l  q ln(q/n) 

we obtain for (p the functional equation 

( p - ( p / n )  (,, p ln(p/n) 
~,1- (q/n) (,, q ln(q/n) 

(9) 

(10) 

(11) 

(12) 

(13) 

3. It is easy to show that general solution of the functional equation 
(13) is 

(p = Ap ln(p/po) (14) 

where A and P0 are some constants. To compare this result with the 
experimental data it is suitable rewrite (14) in the form 

~P - - = a + b l n  p (15) 
P 

If we choose the axes or coordinates (y, x) so that, y = ( p / p  and x = l n  p, 
then Eq. (15) [and (14)] is represented by a straight line. 

Since P(r, t) can be considered as the concentration of a passive scalar, 
we can use recent experimental data on the multifractality of passive scalar 
differences in turbulent media. Figure 1 shows the experimental data 
obtained in the atmosphere (25 m above the ground)) 4~ The passive scalar 
in this experiment was temperature/3) The straight line is drawn in the 
Fig. 1 for comparison with Eq. (15). The same values of (p were also 
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Fig. I. The scaling exponent of the concentration difference moments obtained in the atmo- 
sphere? 4~ The straight line corresponds to Eq. (15). The same data (for integer values of p) 
were also obtained in the experiment 01" ref. 5. 

obtained in another recent experiment, ~5~ which can be an indication that 
the Havl in-Bunde hypothesis is valid for turbulent percolation. 

4. It seems natural to apply analogous considerations to kinetic sur- 
face roughening with power-law-distributed amplitudes of uncorrelated 
noise j6, 7~ The appropriately normalized qth-order correlation function of 
the height differences 

cp(r) = ( Ih (x  + i") - h ( x ) l  p ) ~ rr (16) 

should be used in this case instead of (10). 16'7) Figure 2 (adapted from 
ref. 6) shows the results of a recent large-scale simulations of kinetic surface 
roughening with power-law-distributed amplitudes of uncorrelated noise. 
Already the authors of ref. 6 pointed out that the sharp change at p ~ 3 
(In p ~  1) can be an indication of a phase transition (in our terms this is 
the phase transition form random fractality to homogeneity: y ~ 1). The 
straight line in Fig. 2 is drawn for comparison with (15) (cf. Fig. 1). 
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Fig. 2. The scaling exponent of the pth order correlation function of the height differences 
obtained in large-scale computer simulations of kinetic surface roughening with power-law- 
distributed amplitudes of uncorrelated noise (adapted from ref. 6). The straight lines corre- 
sponds to Eq. (15). 
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